今天,大學(xué)路小編為大家?guī)?lái)了如何打造人工智能專業(yè)大學(xué) 人工智能有哪些研究方向?,希望能幫助到廣大考生和家長(zhǎng),一起來(lái)看看吧!
近日,由論答公司主辦的教育大數(shù)據(jù)研討會(huì)在北京舉行,討論會(huì)主題為“大數(shù)據(jù)+教育,有哪些可能性?”。本次研討會(huì)主要關(guān)注數(shù)據(jù)在教育領(lǐng)域的應(yīng)用,具體包括自適應(yīng)學(xué)習(xí)、學(xué)習(xí)數(shù)據(jù)分析和教育數(shù)據(jù)挖掘。來(lái)自賓夕法尼亞大學(xué)、人民大學(xué)、
華中師范大學(xué)的專家和企業(yè)界代表,共同探討了教育大數(shù)據(jù)和自適應(yīng)學(xué)習(xí)領(lǐng)域的技術(shù)趨勢(shì)和產(chǎn)業(yè)機(jī)會(huì)
Ryan Baker是國(guó)際教育數(shù)據(jù)挖掘協(xié)會(huì)(International Educational Data Mining Society)的創(chuàng)始人、《教育數(shù)據(jù)挖掘》雜志(Journal Educational Data Mining)主編,在各類期刊和會(huì)議發(fā)表了260余篇學(xué)術(shù)論文,先后主持了美國(guó)科學(xué)基金會(huì)(National Science Foundation)、蓋茨基金會(huì)(Gates Foundation)等研究基金的多項(xiàng)重大項(xiàng)目,累計(jì)獲得研究經(jīng)費(fèi)超過(guò)1600萬(wàn)美元。
他也在哥倫比亞大學(xué)教育學(xué)院和愛(ài)丁堡大學(xué)同時(shí)擔(dān)任教職,他在Coursera和edX上開(kāi)設(shè)的“Big Data in Education(教育大數(shù)據(jù))”課程,有來(lái)自100多個(gè)國(guó)家和地區(qū)的學(xué)生注冊(cè)。
研討會(huì)現(xiàn)場(chǎng),Ryan Baker通過(guò)遠(yuǎn)程視頻,分享了他對(duì)教育大數(shù)據(jù)的體驗(yàn)和應(yīng)用。據(jù)他介紹,目前在教育大數(shù)據(jù)領(lǐng)域主要有四大研究組織,分別研究人工智能與教育、教育數(shù)據(jù)挖掘、學(xué)習(xí)數(shù)據(jù)分析和大規(guī)模學(xué)習(xí)。
Ryan Baker表示,在教育領(lǐng)域廣泛應(yīng)用大數(shù)據(jù)的時(shí)代正在到來(lái)。教育數(shù)據(jù)挖掘有很多的應(yīng)譽(yù)大用方向,包括:預(yù)測(cè)學(xué)生是會(huì)輟學(xué),還是會(huì)成功完成學(xué)慶氏豎業(yè);自動(dòng)檢測(cè)學(xué)生的學(xué)習(xí)投入程度、情感、學(xué)習(xí)策略,以更好地達(dá)到個(gè)性化;給教師和其他相關(guān)人員提供更好的報(bào)告;教育科學(xué)的基礎(chǔ)研究和發(fā)現(xiàn)。
他認(rèn)為,個(gè)性化教育至少要做到三件事情:
1、確定學(xué)生的有關(guān)數(shù)據(jù);
2、了解對(duì)于學(xué)生的學(xué)習(xí)來(lái)說(shuō)什么是真正重要的;
3、有針對(duì)性地為學(xué)生提供合適的教學(xué)。
而通過(guò)教育數(shù)據(jù)挖掘,我們可以推斷很多事情:
學(xué)生的元認(rèn)知和求助。比如,這個(gè)學(xué)生有多自信?當(dāng)他需要幫助時(shí),有沒(méi)有在尋求幫助?他有沒(méi)有在給自己解釋問(wèn)題,有沒(méi)有思考這個(gè)答案是正確的還是錯(cuò)誤的?最重要的,當(dāng)他面臨挑戰(zhàn)時(shí),能否堅(jiān)持下去?
沒(méi)有投入學(xué)習(xí)的行為。比如,“玩弄”系統(tǒng),為了找到正確的答案,有的學(xué)生會(huì)試各種不同的答案,從“1”試到“38”。粗心,本身會(huì)做,但是不用心,最后給出的答案是錯(cuò)的。有些孩子會(huì)做非常難以解釋的行為,比如不用方程符號(hào),而是畫了一個(gè)笑臉。
學(xué)生情感。Baker的研究團(tuán)隊(duì)和其他研究團(tuán)隊(duì),已經(jīng)創(chuàng)造了研究模型,可以根據(jù)數(shù)據(jù)推斷,學(xué)生是否感到厭倦、沮喪、困惑、好奇、興奮、快樂(lè),是否投入,等等。
長(zhǎng)期的學(xué)習(xí)結(jié)果。比如,學(xué)生能夠記住剛才他學(xué)的東西嗎?學(xué)生準(zhǔn)備好學(xué)習(xí)下一個(gè)主題、下一個(gè)知識(shí)沒(méi)有?中學(xué)生能上大學(xué)嗎?他會(huì)從大學(xué)畢業(yè)還是輟學(xué)?
Ryan Baker表示,要獲得這樣的推斷,只需要學(xué)生與系統(tǒng)交互的數(shù)據(jù),不需要學(xué)生戴上頭盔檢測(cè)器。目前,這些模型已經(jīng)開(kāi)始大規(guī)模應(yīng)用于自適應(yīng)學(xué)習(xí),應(yīng)用于幾十萬(wàn)的美國(guó)學(xué)生。Ryan Baker列舉了一些自適應(yīng)學(xué)習(xí)系統(tǒng)的案例。
Knewton
通過(guò)系統(tǒng)決定學(xué)生下一個(gè)要學(xué)習(xí)的問(wèn)題是什么,已在全球的多個(gè)領(lǐng)域多個(gè)學(xué)科中運(yùn)用。
ALEKS-ALEKS
用的是先行知識(shí)結(jié)構(gòu)和知識(shí)點(diǎn)模型,來(lái)選擇最適合學(xué)生的學(xué)習(xí)材料。比如,一個(gè)學(xué)生在學(xué)習(xí)上出現(xiàn)了問(wèn)題,系統(tǒng)能夠檢測(cè)出來(lái),是以前學(xué)的知識(shí)點(diǎn)出了問(wèn)題,然后讓學(xué)生回到以前的知識(shí)點(diǎn)上去學(xué)習(xí)。ALEKS系統(tǒng)應(yīng)用于美國(guó)高中、大學(xué)的數(shù)學(xué)、科學(xué)學(xué)科。
Cognitive Tutor
系統(tǒng)能自動(dòng)檢測(cè)學(xué)生的知識(shí),直到學(xué)生掌握為止。比如,系統(tǒng)不會(huì)讓學(xué)生學(xué)習(xí)下一步的知識(shí),直到他展示出他已經(jīng)學(xué)好了他現(xiàn)在正在學(xué)習(xí)的知識(shí)。系統(tǒng)能夠給學(xué)校提供數(shù)據(jù)報(bào)告,學(xué)校根據(jù)報(bào)告能夠更好地讓學(xué)生投入到學(xué)習(xí)中去。每年大約被50萬(wàn)的美國(guó)初高中生用于數(shù)學(xué)學(xué)習(xí)。
論答
論答公司的系統(tǒng)與ALEKS的系統(tǒng)有些類似,也是用先行結(jié)構(gòu)和知識(shí)點(diǎn)模型,選擇合適的學(xué)習(xí)材料。同時(shí)也是自動(dòng)檢測(cè)學(xué)生的知識(shí)狀態(tài)直到學(xué)生掌握為止。應(yīng)用領(lǐng)域目前包括數(shù)學(xué)和英語(yǔ),完全針對(duì)中國(guó)學(xué)生開(kāi)發(fā)。
Reasoning Mind
用各種自動(dòng)檢測(cè)的模型來(lái)檢測(cè)老師的教學(xué)是否有效。通過(guò)數(shù)據(jù)生成報(bào)告給每個(gè)地區(qū)的教學(xué)管理員,讓他們找到方法幫助老師提高教學(xué)。主要是用于美國(guó)的小學(xué)數(shù)學(xué)。
Duolingo
自動(dòng)檢測(cè)學(xué)生記憶,來(lái)決定什么時(shí)候回顧已經(jīng)學(xué)過(guò)的知識(shí)。在全世界范圍內(nèi)應(yīng)用于外語(yǔ)詞核肢匯的學(xué)習(xí)。
其他的像Civitas,Course Signals,Zogotech都是地區(qū)供應(yīng)商,運(yùn)用風(fēng)險(xiǎn)預(yù)測(cè)模型提供行動(dòng)信息預(yù)測(cè)。它們會(huì)對(duì)學(xué)生做出預(yù)測(cè),可能學(xué)不好、會(huì)失敗,把報(bào)告提供給老師。已在世界范圍內(nèi)的大學(xué)應(yīng)用。
Ryan Baker指出,在這些系統(tǒng)中,有足夠的證據(jù)證明,至少以下兩個(gè)系統(tǒng)是非常好的。
1、胡祥恩教授在美國(guó)做了大量實(shí)證研究,證明ALEKS系統(tǒng)對(duì)于幫助學(xué)生學(xué)習(xí)是有效的。他的研究證明,ALEKS系統(tǒng)對(duì)于不同人群的學(xué)生是同樣有效的;特別值得提出的是,ALEKS可以幫助少數(shù)人群群體提高學(xué)習(xí)成績(jī)。
2、Ryan Baker本人領(lǐng)導(dǎo)的研究團(tuán)隊(duì)與論答公司合作的研究表明,學(xué)生通過(guò)論答系統(tǒng)學(xué)習(xí),比通過(guò)傳統(tǒng)的在線學(xué)習(xí)系統(tǒng)學(xué)習(xí),效果更好。他們?cè)谥袊?guó)3個(gè)不同的地區(qū)做的3次實(shí)證研究,都證明了論答系統(tǒng)的有效性。
Ryan Baker分析了教育大數(shù)據(jù)算法模型的潛在發(fā)展方向。他認(rèn)為,這些模型的長(zhǎng)期潛力是,通過(guò)學(xué)生的知識(shí)和學(xué)習(xí)模型來(lái)確認(rèn),學(xué)生什么時(shí)候需要更多的支持:
首先是“mastery learning”,學(xué)生在掌握一個(gè)知識(shí)前,不會(huì)讓他去學(xué)習(xí)下一個(gè)知識(shí)。當(dāng)學(xué)生需要支持的時(shí)候,自動(dòng)介入;同時(shí)告訴老師和父母,這個(gè)學(xué)生什么時(shí)候需要支持。
通過(guò)學(xué)習(xí)投入程度模型判斷,學(xué)生什么時(shí)候開(kāi)始變得厭倦、沮喪了,并調(diào)整學(xué)習(xí)活動(dòng),讓厭倦的學(xué)生不再厭倦,讓沮喪的學(xué)生的學(xué)習(xí)變得更容易一些。
學(xué)習(xí)投入程度模型還可以檢測(cè),在線學(xué)習(xí)中,什么樣的學(xué)習(xí)活動(dòng),能讓學(xué)生更容易地投入進(jìn)去,并最終發(fā)現(xiàn),什么樣的學(xué)習(xí)活動(dòng)對(duì)學(xué)生更好、對(duì)什么樣的學(xué)生更好。
這樣的模型也能告訴老師和父母,學(xué)生什么時(shí)候開(kāi)始變得不再投入學(xué)習(xí)了。
還可以運(yùn)用學(xué)習(xí)模型確認(rèn),學(xué)生什么時(shí)候沒(méi)有真正學(xué)會(huì),需要更多支持。
最后,Ryan Baker指出,下一步的目標(biāo)是優(yōu)化之前已經(jīng)驗(yàn)證的經(jīng)驗(yàn)和方法,然后把它們運(yùn)用到系統(tǒng)中,最終讓中國(guó)和世界上的數(shù)十億學(xué)生受益。
討論:“因材施教”的千年理想該如何照進(jìn)現(xiàn)實(shí)?
王楓博士,論答公司(Learnta Inc.)創(chuàng)始人兼CEO
胡飛芳博士,美國(guó)喬治華盛頓大學(xué)(George Washington University)統(tǒng)計(jì)學(xué)終身教授,
中國(guó)人民大學(xué)統(tǒng)計(jì)與大數(shù)據(jù)研究院的教授
胡祥恩博士,美國(guó)孟菲斯大學(xué)(University of Memphis)心理系、計(jì)算機(jī)科學(xué)系、計(jì)算機(jī)工程系終身教授,華中師范大學(xué)心理學(xué)院院長(zhǎng)
馬鎮(zhèn)筠博士,論答公司聯(lián)合創(chuàng)始人兼首席數(shù)據(jù)科學(xué)家
辛濤博士,
北京師范大學(xué)中國(guó)基礎(chǔ)教育質(zhì)量監(jiān)測(cè)協(xié)同創(chuàng)新中心常務(wù)副主任、博士生導(dǎo)師,兼任國(guó)家督學(xué)、教育部基礎(chǔ)教育課程教材專家工作委員會(huì)委員、中國(guó)教育學(xué)會(huì)學(xué)術(shù)委員會(huì)委員。
技術(shù)發(fā)展到今天,“因材施教”如何實(shí)現(xiàn)?
王楓:因材施教,我首先到的是,每位學(xué)生學(xué)習(xí)的內(nèi)容都不一樣。如果有新的技術(shù)或者系統(tǒng),系統(tǒng)應(yīng)該像一個(gè)好老師一樣,不會(huì)頭疼醫(yī)頭腳疼醫(yī)腳。比如說(shuō),一元二次方程做錯(cuò)了,好老師不會(huì)簡(jiǎn)單說(shuō)一元二次方程做錯(cuò)了,你繼續(xù)再做十道一元二次方程的題目,這其實(shí)是很差的老師,他沒(méi)有真正去全面評(píng)判學(xué)生,到底是哪些掌握好、哪些掌握不好。
一個(gè)好的老師可能會(huì)說(shuō),我全面地看了你整個(gè)學(xué)習(xí),可能你的問(wèn)題不是出在一元二次方程上面,老師看了你做的題目,一元一次方程沒(méi)有掌握好、因式分解也沒(méi)有掌握好,你繼續(xù)做一元二次方程是浪費(fèi)時(shí)間。這就是從系統(tǒng)角度來(lái)說(shuō),系統(tǒng)做到了根據(jù)每個(gè)學(xué)生最基礎(chǔ)的先行知識(shí)點(diǎn)的結(jié)構(gòu),給你提供最適合你當(dāng)前學(xué)習(xí)的知識(shí)點(diǎn),題目也好、視頻也好、還有其他各種各樣的學(xué)習(xí)內(nèi)容。
胡飛芳:因材施教是我們教育的理想狀態(tài)??鬃雍茉缣岢鲆虿氖┙?,在他當(dāng)時(shí)的歷史環(huán)境里面,因材施教可能更多是個(gè)體性的,因?yàn)槟菚r(shí)學(xué)生少、老師也少,因材施教相對(duì)比較容易做到。
隨著歷史的發(fā)展,我們有更多的人需要教育時(shí),我們做的一件事情是什么呢?就是做了一個(gè)標(biāo)準(zhǔn)化。標(biāo)準(zhǔn)化做的是什么?課堂教育。課堂教育從某種意義上來(lái)講是標(biāo)準(zhǔn)化?,F(xiàn)在這個(gè)歷史階段,教育大數(shù)據(jù)可能真正要做到的就是因材施教,自適應(yīng)學(xué)習(xí)本身想做的也是這個(gè)。
胡祥恩:因材施教事實(shí)上在學(xué)習(xí)理論里有兩個(gè):一個(gè)是outerloop“學(xué)什么”,一個(gè)是innerloop“怎么學(xué)”。用技術(shù)來(lái)細(xì)化因材施教是教育產(chǎn)業(yè)走向成熟的一個(gè)標(biāo)志。但是這個(gè)路非常非常難,因?yàn)椤霸趺磳W(xué)”那個(gè)層次非常非常難。
馬鎮(zhèn)筠:“因材”代表認(rèn)識(shí)到學(xué)生的個(gè)體化差異,“施教”指進(jìn)行差異化教學(xué),這是根本思想。但如果考慮到時(shí)代背景,孔夫子時(shí)代專注的是學(xué)生的職業(yè)發(fā)展方向,也就是說(shuō),把適合當(dāng)政治家的培養(yǎng)成政治家,把適合當(dāng)學(xué)者的培養(yǎng)成學(xué)者?,F(xiàn)在再提因材施教,我們其實(shí)能做得更多、更精細(xì)化。
比如,“因材”,對(duì)“材”的分類不僅是職業(yè)方向,還會(huì)考慮到學(xué)生的學(xué)習(xí)狀態(tài)、學(xué)習(xí)目標(biāo)、潛在能力、興趣偏好等。而且,傳統(tǒng)意義上的因材施教考慮的是學(xué)生個(gè)體間的差異,沒(méi)有重視學(xué)生本身狀態(tài)是在發(fā)生變化的,學(xué)生在不斷學(xué)習(xí),狀態(tài)甚至興趣各方面都可能發(fā)生變化。
但這些是自適應(yīng)學(xué)習(xí)能夠做到,甚至比傳統(tǒng)的因材施教做得更好的地方。再說(shuō)到“施教”,現(xiàn)在我們能做的幾件事,包括學(xué)習(xí)路徑推薦,給不同的學(xué)生匹配他最合適的學(xué)習(xí)內(nèi)容,這種非常精細(xì)化的層面,我們已經(jīng)有了一定的技術(shù)積累。
怎么判斷一個(gè)產(chǎn)品做到了真正的自適應(yīng)?
馬鎮(zhèn)筠:大多數(shù)產(chǎn)品的學(xué)習(xí)過(guò)程可以分為測(cè)、學(xué)、練,可以從這三個(gè)環(huán)節(jié)去看這個(gè)產(chǎn)品做到什么程度。
測(cè),各種學(xué)習(xí)機(jī)構(gòu)都有測(cè)評(píng)。但是國(guó)內(nèi)只有論答團(tuán)隊(duì)第一個(gè)做出來(lái)能夠在幾十道題內(nèi),精準(zhǔn)判斷你一百個(gè)知識(shí)點(diǎn),哪21個(gè)沒(méi)掌握,哪79個(gè)掌握了。市場(chǎng)上大部分競(jìng)品,只會(huì)告訴你,知識(shí)點(diǎn)掌握率或者分?jǐn)?shù),79分或者知識(shí)掌握率達(dá)到79%;或者一些其他維度的總結(jié),比如邏輯思維能力比較強(qiáng)、閱讀的磨煉技巧比較好、學(xué)習(xí)動(dòng)力哪方面稀缺。他們做了降維,本來(lái)很復(fù)雜的學(xué)習(xí)狀態(tài)這樣說(shuō)出來(lái),相對(duì)比較容易實(shí)現(xiàn)。但如果要做到具體告訴你,哪些知識(shí)點(diǎn)掌握、哪些知識(shí)點(diǎn)沒(méi)掌握,這個(gè)難度就高很多了。
關(guān)于學(xué)習(xí)路徑推薦的話,很多題庫(kù)類的軟件,知識(shí)點(diǎn)學(xué)完之后,會(huì)給一些題目推薦,但真正實(shí)現(xiàn)路徑推薦的很少很少。路徑推薦也是很核心的,有20個(gè)知識(shí)點(diǎn)沒(méi)掌握,先學(xué)哪個(gè)知識(shí)點(diǎn),后學(xué)哪個(gè)知識(shí)點(diǎn),學(xué)習(xí)順序是非常關(guān)鍵的,必須遵循循序漸進(jìn)的原則,哪些知識(shí)點(diǎn)是前提知識(shí)點(diǎn),哪些知識(shí)點(diǎn)是后續(xù)知識(shí)點(diǎn),隨機(jī)給你知識(shí)點(diǎn)去學(xué)習(xí)的話不能起到最好效果。真正到了練或?qū)W的環(huán)節(jié),推薦什么樣的視頻,先推視頻還是先推文字講義,推簡(jiǎn)單題、中等難度題還是復(fù)雜題目,都需要根據(jù)學(xué)生實(shí)際情況來(lái)決定。
剛才只是舉了幾個(gè)例子,具體涉及到背后的算法、整個(gè)系統(tǒng)跟學(xué)習(xí)內(nèi)容的結(jié)合以及整個(gè)教學(xué)流程的實(shí)現(xiàn),中間很多環(huán)節(jié)必須要打通,形成一個(gè)閉環(huán),才能對(duì)最終的結(jié)果負(fù)責(zé)。
辛濤:我的研究領(lǐng)域是教育和心理學(xué)的測(cè)量和評(píng)價(jià)。我個(gè)人的學(xué)術(shù)觀察,基本上在現(xiàn)代這領(lǐng)域是兩個(gè)類型。一個(gè)是心理測(cè)量領(lǐng)域,有一套成熟的方法,包括早期的IRT(Item Response Theory)和現(xiàn)在的ADT。另外一個(gè)是人工智能檢測(cè)。心理測(cè)量系統(tǒng),是一小群人在做;人工智能化是大的方向,現(xiàn)在是顯學(xué),給大家提供了明顯的可能性。重要的是,那些背后的算法,能夠在企業(yè)里真正實(shí)現(xiàn)出來(lái)。現(xiàn)在可能很多算法已經(jīng)在那兒了,大體上路徑是通的。
自適應(yīng)學(xué)習(xí)基本上是把學(xué)習(xí)和評(píng)價(jià)聯(lián)動(dòng)起來(lái)了。因?yàn)椋赃m應(yīng)學(xué)習(xí),必須有一個(gè)系統(tǒng)隨時(shí)看到學(xué)生學(xué)到什么程度,這個(gè)完全是評(píng)價(jià)。但是,評(píng)價(jià)完了之后有一個(gè)新的呈現(xiàn)。這一塊現(xiàn)在已經(jīng)有一些很成熟的一些東西了,但不是一時(shí)半時(shí)可以說(shuō)得特別具體的。
我做教育的測(cè)量和心理測(cè)量,人工智能那塊我不熟。但是,從教育測(cè)量角度來(lái)說(shuō),在自適應(yīng)學(xué)習(xí)和新技術(shù)結(jié)合之前,很大一塊還是自適應(yīng)考試,CAT(computer adaptive test)。系列化產(chǎn)生一個(gè)CAT變成了一個(gè)自適應(yīng)學(xué)習(xí)的過(guò)程。總的來(lái)說(shuō),使用最簡(jiǎn)單、最機(jī)械化的方法,連續(xù)的CAT實(shí)際上是可以破解一個(gè)學(xué)習(xí)過(guò)程的。
測(cè)評(píng)本身經(jīng)歷了好幾個(gè)階段,通常用三個(gè)應(yīng)用介詞表示。
acces*ent to learning and teaching;
現(xiàn)在國(guó)家倡導(dǎo)的,acces*ent for learning and teaching,測(cè)評(píng)要對(duì)學(xué)習(xí)和教學(xué)有幫助;
跟信息化結(jié)合,acces*ent as learning and teaching,它是學(xué)習(xí)提供的完全融合的一個(gè)環(huán)節(jié)。
王楓:什么樣的自適應(yīng)學(xué)習(xí)系統(tǒng)才是真正的高級(jí)自適應(yīng)學(xué)習(xí)系統(tǒng)?在中國(guó)的落地到底是怎么樣才能真正落地?我在馬博士的基礎(chǔ)上想補(bǔ)充一點(diǎn)。
自適應(yīng)系統(tǒng)如果一定要分級(jí),也可以簡(jiǎn)單分一下。一種最基礎(chǔ)的系統(tǒng)是基于規(guī)則的,比如說(shuō)埋點(diǎn)。一個(gè)學(xué)生做10道一元二次方程題目,我預(yù)先埋好了,你做錯(cuò)了,立馬給你推五道一元一次方程題目、五道因式分解題目。這個(gè)是埋點(diǎn)埋好了,這是規(guī)則,預(yù)先由老師或公式設(shè)置好了。
但這個(gè)規(guī)則有用性是非常有限的,因?yàn)槊總€(gè)學(xué)生不一樣,A學(xué)生是因?yàn)橐辉淮畏匠滩粫?huì),B學(xué)生可能是因式分解不會(huì),C學(xué)生可能連小學(xué)的乘法快速運(yùn)算都不會(huì),這個(gè)沒(méi)法預(yù)先直接埋點(diǎn)準(zhǔn)備好。
所以自適應(yīng)系統(tǒng)真正到了更高級(jí)一點(diǎn)的話,一定是真正通過(guò)大數(shù)據(jù)、根據(jù)算法模型來(lái)分析學(xué)生的學(xué)習(xí)數(shù)據(jù),匹配下一步應(yīng)該學(xué)什么。
在中國(guó),自適應(yīng)學(xué)習(xí)有效應(yīng)用于教學(xué)有三個(gè)前提條件。做到這三點(diǎn),自適應(yīng)學(xué)習(xí)在中國(guó)的教育里面前途無(wú)限。
好的產(chǎn)品。必須要有針對(duì)中國(guó)本土化的自適應(yīng)學(xué)習(xí)產(chǎn)品,把它開(kāi)發(fā)出來(lái)。像ALEKS系統(tǒng)的確算法不錯(cuò),但里面連一套國(guó)內(nèi)的高考題都沒(méi)有,家長(zhǎng)不會(huì)讓小孩子用這樣的系統(tǒng),因?yàn)橹苯佑绊憫?yīng)試目標(biāo)。真正本土化開(kāi)發(fā)的話,沒(méi)有一成不變的算法,世界上最好算法就是沒(méi)有開(kāi)發(fā)出來(lái)的。教育非常復(fù)雜,每個(gè)學(xué)科不一樣。比如數(shù)學(xué)后臺(tái)有強(qiáng)大的關(guān)系,先行后續(xù)關(guān)系;英語(yǔ)沒(méi)達(dá)到數(shù)學(xué)這么強(qiáng)的相關(guān)性,但算法是一樣可以應(yīng)用的。
好的學(xué)生、家長(zhǎng)、老師。有了好的產(chǎn)品,首先學(xué)生應(yīng)該真正投入進(jìn)去學(xué)習(xí)。像Ryan Baker教授講的,學(xué)生如果隨便學(xué)一下,再好的系統(tǒng)也沒(méi)用。第二,家長(zhǎng)得督促孩子學(xué)習(xí)。第三,老師非常重要。老師應(yīng)該做有價(jià)值的事情,比如給學(xué)生做個(gè)性化的輔導(dǎo)答疑,給學(xué)生針對(duì)性的講解,組織學(xué)習(xí)活動(dòng)小組,鼓勵(lì)學(xué)生發(fā)揮創(chuàng)造能力,領(lǐng)導(dǎo)能力的培養(yǎng)。
學(xué)校以點(diǎn)帶面。學(xué)生大部分時(shí)間都在學(xué)校里面學(xué)習(xí)。如果學(xué)校里最基本的、有效的在線教學(xué)產(chǎn)品都不應(yīng)用的話,其實(shí)是有問(wèn)題的。但是改變絕對(duì)不是簡(jiǎn)單的行政命令可以解決的。一個(gè)好的產(chǎn)品,一定是從點(diǎn)到面,逐步推廣。自適應(yīng)學(xué)習(xí),更適合有明確目的的學(xué)習(xí),像應(yīng)試教育這塊可以做得更好。所以學(xué)??梢詰?yīng)用進(jìn)去。
胡祥恩:我覺(jué)得大家做自適應(yīng)也好、因材施教也好,比較好的例子大家可以看一看。教育這個(gè)領(lǐng)域有多大,自適應(yīng)概念就該有多寬。所以說(shuō),實(shí)驗(yàn)室里面有很多小的做得非常非常好的東西,只是沒(méi)有到市場(chǎng)上面去,有很多非常非常巧妙的算法、一些東西。你會(huì)發(fā)現(xiàn)很多歐洲的、美國(guó)的實(shí)驗(yàn)室做的system,我每次看了都有種,自己是坐井觀天的感覺(jué)。
怎么看待人工智能在教育中的應(yīng)用?
胡飛芳:AlphaGo跟master,谷歌做了一個(gè)非常好的廣告,人工智能在某些方面可以做得非常好。但是,我現(xiàn)在給你們講另外一個(gè)谷歌自己不會(huì)去說(shuō)的例子,但這也是事實(shí)。2008年、2009年的時(shí)候,谷歌推出一個(gè)免費(fèi)產(chǎn)品,用各種搜集到的數(shù)據(jù),預(yù)測(cè)美國(guó)的流感發(fā)展趨勢(shì)。開(kāi)始時(shí)很成功,預(yù)測(cè)跟實(shí)際發(fā)生的情況很相似。但到2015年,他自動(dòng)撤回去了,不再提供預(yù)測(cè)。因?yàn)樵?012跟2013年預(yù)測(cè)的時(shí)候,預(yù)測(cè)結(jié)果跟實(shí)際情況相差非常遠(yuǎn)。
這說(shuō)明像這種不確定性的問(wèn)題,人工智能還有非常大的局限性。一旦有不確定的數(shù)據(jù),就有噪音。數(shù)據(jù)量很大時(shí),大數(shù)據(jù)可能產(chǎn)生大噪音。怎樣使噪音下降?2015年一個(gè)哈佛教授的研究團(tuán)隊(duì)在谷歌的基礎(chǔ)上,用谷歌的數(shù)據(jù)去做同樣的預(yù)測(cè)。他用了什么呢?就是用了模型,實(shí)際上模型在很多時(shí)候降噪是很有用的,用模型去預(yù)測(cè),而不完全是人工智能的方式去預(yù)測(cè)。結(jié)果,他做出來(lái)的預(yù)測(cè)基本都比較準(zhǔn)。
人工智能相對(duì)比較成功的,是比較確定的問(wèn)題,所謂的確定是不管有多少種可能性,還是一個(gè)確定的東西。而流感很多時(shí)候是完全不確定的因素。
教育其實(shí)很多時(shí)候也是不確定的。同樣一個(gè)人,現(xiàn)在讓他回答這個(gè)問(wèn)題,他可能思路清楚地回答出來(lái);過(guò)了一個(gè)小時(shí)后,即使是同樣類型的問(wèn)題,按道理他應(yīng)該回答出來(lái),結(jié)果他回答不出來(lái)。這是說(shuō),實(shí)際上有很多因素在干擾的時(shí)候,人工智能的功能是不是會(huì)減少一點(diǎn)。把模型跟人工智能加在一起,會(huì)彌補(bǔ)人工智能在某些方面的弱點(diǎn),這樣會(huì)更好。
怎樣促進(jìn)商界和學(xué)界的交流,更好地把學(xué)界已經(jīng)有的一些成果,運(yùn)用到市場(chǎng)上來(lái)?
胡祥恩:教育產(chǎn)業(yè)應(yīng)該是一個(gè)最大的產(chǎn)業(yè),教育產(chǎn)業(yè)事實(shí)上是一個(gè)知識(shí)產(chǎn)業(yè)鏈。到目前為止,很多人認(rèn)為自己要做一整套系統(tǒng)而在美國(guó)汽車業(yè),最賺錢的是供應(yīng)商,是做輪胎、做玻璃的。一旦標(biāo)準(zhǔn)化之后,一個(gè)人如果螺絲釘生產(chǎn)得最好,他就能夠養(yǎng)活幾家人、幾代人。
到目前為止,美國(guó)推的就是教育標(biāo)準(zhǔn)化,教育內(nèi)容的標(biāo)準(zhǔn)化、教育技術(shù)的標(biāo)準(zhǔn)化。比如說(shuō)97年的時(shí)候,就說(shuō)怎么樣把內(nèi)容標(biāo)準(zhǔn)化,你做的東西我可以用。我只是做整個(gè)教育知識(shí)產(chǎn)業(yè)鏈里面一個(gè)小塊,做得很好。教育整個(gè)的產(chǎn)業(yè)鏈,有可能發(fā)揮特別特別技巧的那些小的公司,就能夠在這個(gè)產(chǎn)業(yè)鏈里面生存、可以做得很好。第一個(gè)是要標(biāo)準(zhǔn)化,第二個(gè)要理解整個(gè)教育是一個(gè)產(chǎn)業(yè)鏈。
人工智能是現(xiàn)在大環(huán)境下需求最大的行業(yè),國(guó)家在這方面的人才缺口特別大,供不應(yīng)求,人工智能發(fā)展前景很可觀。
第一:智能化是未來(lái)的重要趨勢(shì)之一。隨著互聯(lián)網(wǎng)的發(fā)展,大數(shù)據(jù)、云計(jì)算和物聯(lián)網(wǎng)等相關(guān)技術(shù)會(huì)陸續(xù)普及應(yīng)用,在這個(gè)大背景下,智能化必然是發(fā)展趨勢(shì)之一。人工智能相關(guān)技術(shù)將首先在互聯(lián)網(wǎng)行業(yè)開(kāi)始應(yīng)用,然后陸續(xù)普及到其他行業(yè)。所以,從大的發(fā)展前景來(lái)看,人工智能相關(guān)領(lǐng)域的發(fā)展前景還是非常廣闊的。
第二:產(chǎn)業(yè)互聯(lián)網(wǎng)的發(fā)展必然會(huì)帶動(dòng)人工智能的發(fā)展?;ヂ?lián)網(wǎng)當(dāng)前正在從消費(fèi)互聯(lián)網(wǎng)向產(chǎn)業(yè)互聯(lián)網(wǎng)發(fā)展,產(chǎn)業(yè)互聯(lián)網(wǎng)將綜合應(yīng)用物聯(lián)網(wǎng)、大數(shù)據(jù)和人工智能等相關(guān)技術(shù)來(lái)賦能廣大傳統(tǒng)行業(yè),人工智能作為重要的技術(shù)之一,必然會(huì)在產(chǎn)業(yè)互聯(lián)網(wǎng)發(fā)展的過(guò)程中釋放出大量的就業(yè)崗位。
人工智能專業(yè)就業(yè)指導(dǎo):
科學(xué)研究、工程開(kāi)發(fā)、計(jì)算機(jī)方向、軟件工程、應(yīng)用數(shù)學(xué)、電氣自動(dòng)化、通信、機(jī)械*。一方面,人工智能的研發(fā)難度較大。另一方面,人工智能的研發(fā)需要更多的研究資源,人才培養(yǎng)周期相對(duì)較長(zhǎng)。由于目前人工智能產(chǎn)業(yè)還處于發(fā)展初期,所以學(xué)習(xí)人工智能專業(yè)要想有更好的就業(yè)出口。
想了解更多有關(guān)人工此散空智能的詳情,推薦咨詢
達(dá)內(nèi)教育
。達(dá)內(nèi)教育具有豐厚的師掘姿資力量,優(yōu)秀的教學(xué)體系,教學(xué)質(zhì)量突出,實(shí)戰(zhàn)講師,經(jīng)驗(yàn)豐富,理論知識(shí)+學(xué)習(xí)思維+實(shí)戰(zhàn)操作,打造完整學(xué)習(xí)閉環(huán)。達(dá)內(nèi)教育獨(dú)創(chuàng)TTS8.0教學(xué)系統(tǒng),并設(shè)有企業(yè)雙選會(huì)。達(dá)內(nèi)的OMO教學(xué)模式,全新升級(jí),線上線下交互學(xué)習(xí),直森瞎播學(xué),隨時(shí)學(xué),隨時(shí)問(wèn),反復(fù)學(xué),讓學(xué)員學(xué)習(xí)更便捷。
感興趣的話點(diǎn)擊此處,免費(fèi)學(xué)習(xí)一下
以上就是大學(xué)路整理的如何打造人工智能專業(yè)大學(xué) 人工智能有哪些研究方向?相關(guān)內(nèi)容,想要了解更多信息,敬請(qǐng)查閱大學(xué)路。